Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Mol Struct ; : 134128, 2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2245264

ABSTRACT

During the ongoing pandemic, there have been increasing reports of invasive fungal disease (IFD), particularly among immunocompromised populations. Candida albicans is one of the most common clinical pathogenic microorganisms which have become a serious health threat to population either infected with Covid-19 or on treatment with immunosuppressant's/broad-range antibiotics. Currently, benzothiazole is a well explored scaffold for anti-fungal activity, especially mercapto substituted benzothiazoles. It is reported that exploring the 2nd position of benzothiazoles yield improved anti-fungal molecules. Therefore, in the current study, lead optimization approach using bioisosteric replacement protocol was followed to improve the anti-fungal activity of an already reported benzothiazole derivative, N-(1,3-benzothiazole-2-yl)-2-(pyridine-3-ylformohydrazido) acetamide. To rationally identify the putative anti-candida targets of this derivative, network analysis was carried out. Complexes of designed compounds and identified putative targets were further analyzed for the docking interactions and their consequent retention after the completion of exhaustive MD simulations. Top seven designed compounds were synthesized and evaluated for in-vitro anti-fungal property against Candida, which indicated that compounds 1.2c and 1.2f possess improved and comparable anti-fungal activity to N-(1,3-benzothiazole-2-yl)-2-(pyridine-3-ylformohydrazido) acetamide and Nystatin, respectively.

2.
Molecules ; 26(8)2021 Apr 10.
Article in English | MEDLINE | ID: covidwho-1302421

ABSTRACT

The review is devoted to modern trends in the chemistry of 2-amino and 2-mercapto substituted benzothiazoles covering the literature since 2015. The reviewed heterocycles belong to biologically active and industrially demanded compounds. Newly developed synthesis methods can be divided into conventional multistep processes and one-pot, atom economy procedures, realized using green chemistry principles and simple reagents. The easy functionalization of the 2-NH2 and 2-SH groups and the benzene ring of the benzothiazole moiety allows considering them as highly reactive building blocks for organic and organoelement synthesis, including the synthesis of pharmacologically active heterocycles. The review provides a summary of findings, which may be useful for developing new drugs and materials and new synthetic approaches and patterns of reactivity.


Subject(s)
Benzothiazoles/chemical synthesis , Green Chemistry Technology , Pharmacology/trends , Benzothiazoles/chemistry , Benzothiazoles/therapeutic use , Humans
SELECTION OF CITATIONS
SEARCH DETAIL